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The n m b e a r  resonant-triad interaction, proposed by Rwtz (1959), Craik (1971), 
and others for a Blasius boundary layer, is analysed here for an adverse-pressure- 
gradient boundary layer. We assume that the adverse pressure gradient is in some 
sense weak and, therefore, that the instability growth rate is small. This ensures that 
there is a well-defined critical layer located somewhere within the flow and that the 
nonlinear interaction is effectively confined to that layer. The initial interaction is of 
the parametric resonance type, even when the modal amplitudes are all of the same 
order. This means that the oblique instability waves exhibit faster than exponential 
growth and that the growth rate of the two-dimensional mode remains linear. 
However, the interaction and the resulting growth rates become fully coupled, once 
oblique-mode amplitudes become sufficiently large, but the coupling terms are now 
quartic, rather than quadratic as in the Craik (1971) analysis. More importantly, 
however, new nonlinear interactions, which were not present in the Craik-type 
analyses, now come into play. These interactions eventually have a dominant effect 
on the instability wave development. 

1. Introduction 
Subsonic boundary-layer transition experiments often involve spatially growing 

instability waves generated by nearly two-dimensional, single-frequency excitation 
devices such as vibrating ribbons or acoustic speakers. Experimentalists often go to 
great lengths to make the background disturbance level as small possible in order 
to minimize the required external forcing levels. The resulting initial disturbances are 
then relatively two-dimensional, have harmonic time dependence and are well 
described by linear instability theory. This two-dimensional linear behaviour usually 
persists over very long streamwise distances in many of the more recent experiments 
where excitation levels tend to be quite small. However, the flow eventually becomes 
three-dimensional, as evidenced by the subsequent appearance of A-shaped 
structures in experiments where smoke-flow visualization is used. These structures, 
which are arranged in rows, can be aligned or can be staggered in dternating rows. 
The unstaggered arrangement, which was originally observed by Klebanoff, 
Tidstrom & Sargent (1962), is usually referred to as ‘peak-valley ’ splitting. 

The staggered arrangement, which tends to predominate at the lower excitation 
levels, is usually associated with a weak nonlinearity (Craik 1971 ; Smith & Stewart 
1987) resulting from a resonant-triad interaction between a pair of oblique 
subharmonic modes (which frequently originate from the background disturbance 
environment) with the basic fundamental two-dimensional mode. This type of 
interaction was originally analysed for the case of viscous-dominated Tollmien- 
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Schlichting-type instabilities by Raetz (1959) and later by Craik (1971), who 
proposed that the unstaggered (or KlebanoQ arrangement (see Klebanoff et al. 1962) 
could also result from a resonant-triad interaction, which would then involve a pair 
of oblique fundamental harmonic modes interacting with the small two-dimensional 
instability mode that is invariably generated at  the first harmonic of the excitation 
frequency (see $5.2 of Kachanov & Levchenko 1984 for a discussion of this issue). 

Smith & Stewart (1987) attempted to put Craik’s (1971) analysis on (what they 
consider to be) a more ‘rational ‘ basis by using triple-deck-type arguments, which 
they justify by noting that the Tollmien-Schlichting waves have a triple-deck 
structure in the vicinity of the lower branch of the neutral stability curve. This 
means that their results are focused on the case where nonlinearity comes into play 
at Reynolds number and frequency parameters beyond but still relatively close to 
the lower-branch neutral stability curve, where the critical layer is still within the 
viscous wall layer. Their result implies that this produces complete two-way coupling 
of the oblique and two-dimensional modes when the oblique-mode amplitude is of the 
same order as that of the plane wave. 

These previous analyses were all concerned with viscous- or Tollmien-Schlichting- 
type instabilities. But transition in technological devices most often occurs in regions 
of adverse pressure gradient, and the onset of three-dimensionality typically occurs 
about four or five wavelengths upstream of the resulting transition point. The 
present paper therefore considers the case where the adverse pressure gradients are 
strong enough to produce essentially inviscid instabilities of the Rayleigh type. 
However, it is still appropriate to examine the limit of small adverse pressure 
gradient because even relatively small adverse pressure gradients (say, O(R-s), where 
R denotes the Reynolds number based on downstream distance) can separate a 
laminar boundary layer (see e.g. Cheng & Smith 1982), in which case analyses of the 
present type would be largely irrelevant. 

Of course, laminar boundary layers can also sustain order-one adverse pressure 
gradients, but even these tend to be numerically small. For example, separation 
occurs in the Falkner-Skan profiles when the Falkner-Skan exponent m, which 
directly corresponds to the negative of our normalized pressure gradient parameter 
p defined in $2 below, is equal to -0.091 (Schlichting 1979, p. 165). Moreover, it is 
easy to show from the numbers given by Stewartson, Smith & Kaups (1982) that 
marginal separation is initiated on the ‘leading-edge ellipse ’ of a thin airfoil when our 
pressure gradient parameter ,u x 0.17, which is remarkably close to the Falkner-Skan 
value. 

We realize, of course, that there is a distinct difference between numerically and 
asymptotically small quantities and that the former definitely does not imply the 
latter in all cases. However, the numerically small adverse pressure gradient does 
suggest that the small-pressure-gradient asymptotic expansion will be a good 
approximation to the exact result right up to separation. Figure 1, which is a 
comparison of the numerical and asymptotic linear growth rates for a plane spatially 
growing instability wave on a Falkner-Skan profile, shows that this is indeed the 
case. 

The linear growth rates are then small (K (pressure gradient squared); see 
Goldstein, Durbin & Leib 1987), and the instability waves have a well-defined critical 
layer, but it is of the non-equilibrium (or growth-dominated) type rather than of the 
equilibrium (or viscous-dominated) type associated with Tollmien-Schlichting 
waves. This brings in a new non-equilibrium effect that does not occur in the analyses 
of Raetz (1959), Craik (1971), and Smith & Stewart (1987) and leads to a different 
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FIQURE 1. Maximum linear spatial growth rate of a plane mode, -a, = AJA, where 

2 = z((m+l)U/2vz)+, 

as a function of the Falkner-Skan parameter ; U = cx"' (-, numerical ; . . . . . * , asymptotic). Both 
are computed at the same frequency which gives a maximum -a, for the numerical solution. 

type of amplitude equation that involves upstream history effects and is therefore an 
integro-differential equation (of the general type obtained by Hickernell 1984 in a 
somewhat different context, and by Goldstein & Choi 1989 in a more closely related 
context) rather than an ordinary differential equation (or, more accurately, a set of 
ordinary differential equations) aa in the previous resonant-triad analyses. However, 
there are also much more important differences that arise because of a new type of 
nonlinear interaction that occuf93 in the present analysis but is absent in the previous 
studies of the resonant-triad interaction. 

As in Smith & Stewart (1987), we attempt to develop a completely rational first- 
principles analysis. And, m in previous studies (e.g. Goldstein & Choi 1989), our 
interest is in the case where the nonlinear interactions arise from the continued 
downstream growth of a triad of initially linear instability wavea: a single two- 
dimensional mode and two oblique modes with half the frequency and streamwise 
wavenumber of the two-dimensional mode and appropriate equal and opposite 
spanwise wavenumbera. These modes can then interact nonlinearly, with the 
nonlinearity fist coming into play in thejcommon critical layer of the three modes. 
The nonlinearity hw a first-order effect on the (common) oblique-mode growth rate 
when the amplitude of the two-dimensional mode becomes of the order of that 
growth rate raised to the power 3. But this initial nonlinearity is weak in the sense 
that it enters through an inhomogeneous term in a higher-order problem rather than 
as a coefficient in the lowest-order equation. The instability wave amplitude can 
then be determined explicitly from a set of amplitude equations (aa in the Craik 
1971 analysis) rather than implicitly through the numerical solution of a partial 
differential equation (as in the Gajjar & Smith 1985 and the Goldstein et d. 1987 
analyses, for example). The amplitude equations are obtained by equating the 
critical-layer velocity jump m calculated from outaide to the velocity jump 
calculated from the solution within the critical layer. 

Since most excitation devices tend to be two-dimensional, the initial oblique mode 
amplitudes should be much smaller than the initial plane wave amplitude. The initial 
nonlinear interaction will then be a secondary instability that leaves the plane wave 
growth rate unchanged while greatly enhancing the growth rate of the oblique 
modes. This might be termed the 'parametric resonance ' stage. Previous studies 



526 M .  E .  Goldstein and S. S.  Lee 

(Craik 1971; Smith & Stewart 1987; etc.) suggest that  the plane-wave growth rate 
should be altered by the nonlinear interaction once the oblique-mode amplitudes 
become equal to  that of the plane wave: which might be termed the ‘fully coupled’ 
(or ‘fully interactive ’) stage. However, the present nonlinear interaction produces no 
critical-layer velocity jump at the fundamental frequency, which means that the 
two-dimensional mode continues to  grow a t  its initial linear growth rate, even when 
the oblique modes become very large. This, in turn, allows these latter modes 
to exhibit faster-than-exponential growth (but not necessarily the very rapid 
exponential-of-an-exponential growth that would occur if the fully coupled terms 
were neglected in the Smith & Stewart 1987 analysis: see discussion in $7 below), 
even when they are much larger than the more slowly growing two-dimensional 
mode. 

Of course, the oblique modes must eventually react back on the two-dimensional 
mode, but only when their (common) amplitude is of the order of the two- 
dimensional modal amplitude divided by the cube of the small streamwise 
wavenumber. The corresponding back-reaction term then turns out to be quartic in 
the oblique mode amplitudes rather than quadratic (as in the Raetz 1959; Craik 
1971 ; and Smith & Stewart 1987 analyses). But even more importantly, the oblique 
modes are now large enough to interact nonlinearly within their common critical 
layer - producing a ‘ self-interaction ’ term, which does not appear in any of the 
previous analyses and which has a dramatic effect on the subsequent instability wave 
development. There is also a new mutual interaction term in the plane-wave 
amplitude equation which does not arise in previous analyses. 

The self-interaction term causes the instability growth to increase beyond the 
faster-than-exponential growth of the parametric resonance stage and ultimately 
leads to  a singularity a t  a finite downstream position. The local asymptotic 
expansions (which hold in the vicinity of the singularity) suggest that full (strong) 
nonlinearity will first come into play near the wall while the instability wave 
amplitude is still small and that the flow will then be governed by the three- 
dimensional, time-dependent, inviscid triple-deck equations in the next stage of 
evolution. However, the viscous terms were dropped before obtaining the final 
solutionst, and viscous effects within the critical layer could ultimately limit the 
instability wave growth and thereby eliminate the singularity (as in the related 
analysis of Goldstein & Leib 1989). Finally, we note that the significant qualitative 
differences between the present results and the previous zero-pressure-gradient 
solutions of Craik (1971), Smith & Stewart (1987), etc. provide additional justification 
for considering only the small-pressure-gradient case. 

The overall plan of the paper is as follows. The problem is formulated in $2, where 
we show how the nonlinear critical-layer interaction gradually evolves from a 
resonant triad of linear small-growth-rate instability waves. The flow outside the 
critical layer is a linear three-dimensional perturbation about a steady two- 
dimensional boundary-layer flow subject to an externally imposed adverse pressure 
gradient. The classical long-wavelength Rayleigh’s equation solution (in the form 
given by Miles 1962) is re-expanded in $ 3  to obtain the relevant solution in the main 
part of the boundary layer. I n  $4, we show that the linear Tollmien solution for the 
wall layer surrounding the critical layer (which always lies close to the wall in the 
long-wavelength small-growth-rate approximation being considered herein) can be 

t The analytical results are exceedingly complex in the viscous case and it is best to solve the 
critical-layer equations numerically when viscosity is retained. This will be done in a subsequent 
paper. 
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matched onto the solution of 93. (A similar approach was used by Graebel 1966, 
Nield 1972, Smith & Bodonyi 1982, and Goldstein et a2. 1987 to solve a related 
problem.) The analyses of these two sections are now quite routine, and we only 
briefly outline enough steps to make the paper self-contained. 

The real complexity comes in when the critical layer is analysed in $5.  The 
appropriate expansions are presented, and the solution that matches onto the 
upstream linear solution and onto the solution outside the critical layer is then found 
by integrating the first-order ordinary differential equation with respect to the 
streamwise coordinate. Matching with the external solution leads to a coupled set of 
nonlinear integro-differential equations for the amplitudes of the instability waves. 
While the algebraic manipulations turn out to be somewhat complex, we believe that 
the effort is more than justified by the relative simplicity of the final results ((5.50) 
and (5.51) below). Moreover, we have attempted to ease the burden to the reader by 
regulating the algebraic details to the appendices. 

The relevant equations have to be solved subject to the upstream boundary 
conditions that their solutions match onto the linear instability waves far upstream 
(in terms of the appropriate scaled streamwise coordinate). Analytical solutions are 
obtained for the linear parametric resonance stage in Appendix E. However, the full 
nonlinear solutions have to be obtained numerically. These latter solutions always 
end in a singularity at a finite downstream position. The relevant local asymptotic 
solution is worked out in $6. The numerical results are discussed in $7. 

2. Formulation 
We suppose that the mean boundary-layer flow is two-dimensional and that the 

local Reynolds number R, (based on the boundary-layer thickness A)  is sufficiently 
large that the unsteady flow is nearly inviscid in the main part of the boundary layer 
and is nearly unaffected by boundary-layer growth over the region in which 
nonlinear interaction takes place. The mean flow velocity U(y), which together with 
the complete flow velocity u = {u, v, w} is assumed to be normalized by the local free- 
stream velocity U,, then depends only on the transverse coordinate y to the required 
order of approximation. This coordinate, together with the streamwise and spanwise 
coordinates 2 and z, respectively, are normalized by A, the pressure p is normalized 
by the dynamic pressure pV,, and the time t is normalized by A/U,.  As indicated 
in $1 ,  the upstream flow (in the region x-+--oo) starts out as a triad of spatially 
growing linear instability waves : a single two-dimensional mode of (normalized) 
frequency w and wavenumber a and two subharmonic oblique modes of frequency $o, 
streamwise wavenumber nearly equal to + and spanwise wavenumbers &p. 

Since the normalized mean pressure gradient p (i.e. the local dimensional pressure 
gradient times the downstream distance divided by the dynamic pressure pv",) is 
assumed to be small, the normalized complex wavenumber a must also be small and 
its imaginary part, which is controlled by p, is then much smaller than its real part 
(Reid 1965 ; Smith & Bodonyi 1982; Goldstein et al. 1987). It follows that each of the 
three modes must have a critical layer at nearly the same transverse position, say ye, 
where the real part of their nearly common phase velocity is equal to U. The 
smallness of p also ensures that the mean boundary-layer velocity is given by the 
Blasius velocity U, plus a small component Up proportional to p, and that 

up + b y 2  -k . . .) u; 11u: 
UB-+ G Y - m Y 4 . + m  y7+ ..., 
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as y+O, where the wall is located a t  y = 0 and the constant U;, denotes the scaled 
Blasius skin friction. 

Arguments given, for example, in Goldstein et al. (1987, p. 328)t show that the 
three instability waves can only grow if 

p- (tql > 0, (2.2) 

and the most rapidly growing modes correspond to the scaling 

p = g 2 -  

R e a  = a ~ + O ( a ~ ) ,  

Rec, = ac+O(d), 

p =  4, 
and yc = + 0 ( a 4 ) ,  (2.7 1 
where F ,  a, c, B, and Y, are order-one real constants (which depend on a), and 
cr2 < 1 characterizes the small pressure gradient. It could be more explicitly defined by 
setting p = 1,  but we retain ji as a parameter to help clarify the role of the pressure 
gradient in our analysis. It now follows from (2.1) that  

U = UB+a2Dp for y = O(1),  (2.8) 

where U p + ~ y 2  as y+O. (2.9) 
- 

The unsteady flow outside the critical layer is still governed by linear dynamics to 
the required order of approximation, which means that the velocity field can be 
written as 

acp 

a Y  
u = uB(y) + a20p(y) +eReA,(x,)> (y, xl, a) eix 

+ S[(2 COSZ) ReA (xl) o(y, xl, a) eiXl2 + ReFio)(y, x1 a) eZiz], (2.10) 

(2.11) w = - 8 Re i d ,  @, eix - 6(2 cosZ) Re iyA@(y, xl, a) eix/2 

and w = S(2sinZ) ReiA@(y,x,, g)eiXI2, (2.12) 

where e is a measure of the amplitude of the two-dimensional instability wave, S is 
a measure of the (common) amplitude of the oblique modes, 

and we have put 

The quantities 

and 

(Y2-p2)f I p - - 
U + -  W - D@, 

Y Y 

x1 = dx. 
x = a&(x - act) 

z = a/% 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

are real to  the required level of approximation, but we allow the modal amplitudes 
A and A ,  to  be complex to  account for possible wavenumber detuning. The X- 

t Note that h2 should be deleted in their equation (2.5) 
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independent disturbance component in (2.10) is induced by nonlinear effects in the 
critical layer (Goldstein & Choi 1989). @ and Go satisfy the Rayleigh’s equations 

(U-C)  (D2-y2) @- U”@ = 0, (2.18) 
( U - C , ) ( D ~ - ~ ~ ) @ ~ - U ” @ ~  = 0, (2.19) 

and the complex wavenumbers y and a and phase speeds c and co, respectively, are 
given to the required levels of approximation, by 

a = aE+dA;/(iA,), (2.20) 
y = aj7+8&4’/(2ipl), (2.21) 

aE 
1 + (2aa/id) (A’/A) ’ 

1 + (8/iE) (&,/Ao) ’ 

C =  

at7 
co = 

(2.22) 

(2.23) 

where we have put 7 = [ ( ; E ) ” p ] t ,  (2.24) 

D ss a/i3yY, (2.25) 

and the primes denote differentiation with respect to the relevant arguments. 
Equations (2.13) and (2.14) can therefore be rewritten as 

m=s in8  D@-- ( U-c  

(2.26) 

(2.27) 

(2.28) 
2 8  

and i%oSe+~sine  = D@-- 

where e = sin-’ (p/j7) (2.29) 

is the propagation angle of the oblique modes. 

U’ A’ 
sin28-@r+O(d‘), 

d u-c ul 

Finally, @ and Go must satisfy the boundary conditions 

@ = @ , = O  at y = O ,  (2.30) 

for tangential flow near the wall. 

3. Solutions in the main boundary layer 
In this and the following sections we derive dispersion relations connecting the 

phase speed F and wavenumbers 6 , ~ ,  and B of the instability waves. They show that 
these latter quantities must have expansions of the form 

(3.1) z = z0+ + a 2 ~ 2  +d( ln  a) E~~ +8a3+ .. . 
with similar expansions for 7 and B. 

Since the analysis is now quite classical we include only enough steps to allow the 
reader to follow along without consulting numerous references. 

First, suppose that y = O(1). A number of investigators have obtained asymptotic 
expansions of the solution to (2.18) and (2.19) that are uniformly valid for y = 0(1 )  
and y $ 1 in the limit as y, a+ 0. The solutions to the present problems are most 
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easily obtained by re-expanding such a solution for small c or c,. Since we need only 
know the logarithmic derivative of our solution, the most convenient solution turns 
out to be the one given by Miles (1962), obtained by transforming (2.18) or (2.19) into 
a Riccati equation. His result can be written as 

where 

and 

1 + 0 ( 0 i 5 ) ,  
D 6  - U' 
6 u-c" (U-c")2Q* 

Q * =  +Q, + OiQ, + Oi2Q2 + . . . , Oi( 1 - c")2 
(3.3) 

(3.5) 

where 6 can denote either @ or @,, c" can denote either c or c, and Oi can denote either 
y or a. A simple derivation is given in Reid (1965, p. 279). Matching is greatly 
simplified by using the classical 'inviscid function' (Lin 1955, p. 37) 

6D6 W G  
U'6- (U-c") D 6 '  

(3.7) 

Substituting (2.8), (2.20)-(2.23), and (3.2)-(3.6) into (3.7), expanding for small u, and 
finally using (2.1) and (2.9), we obtain 

where Wt is purely real. 

4. The Tollmien region (inviscid wall layer) 
As was noted in a related context by Graebel (1966), Nield (1972), Smith & 

Bodonyi (1982), and Goldstein et al. (1987), the re-expansions (3.8) and (3.9) are 
invalid at distances from the wall of the order of the critical-layer distance yc = O(a) 
since they correspond to the limiting process u -+ 0 with y fixed. The analyses of Nield 
(1972) and Graebel (1966) suggest that the scaled transverse coordinate 

Y = y/u  (4.1) 

be introduced directly into (2.18) and (2.19) before attempting to obtain the solution 
in this region. Inserting this along with (2.1), (2.8), (2.9), and (2.20)-(2.23) into (2.18) 
and (2.19), we find that the solutions which satisfy the boundary condition (2.30) are 
of the form 

@ = fT(un+ua)Y+u4F(Y,(b)+ ..., (4.2) 

@n = u(q)+aa,)Y+u4F(Y,(bO)+ ..., (4.3) 
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where a and a, are order-one constants (which may depend on n), and F satisfies 

53 1 

where j.ic = p-  (avo & ) a ,  (4.5) 

F =  v,Y,+O(a), (4.6) 

and we have used the fact that 

where Y, is defined by (2.7). Since (4.4) is singular at Y = Y,, F can certainly be 
discontinuous across Y,, and we denote by Ff the solution above/below this point. 
Integrating (4.4) and imposing the boundary condition (2.30), we obtain 

Ff(Y,d)  =f(Y)+i'cY,[(Y-Y,)~'+Y,~-l, Y 2  Y,, (4-7 1 
where f( Y) = pc{$r) + Y,[( Y - Y,) In IY- Y,I + Y, In Y,]} - ( G2/4!) P( Y,  +tY), (4.8) 

and & denote either of the 'constants' of integration $f or $of which are, in general, 
complex functions of xl. 

As already anticipated, these solutions are most easily matched onto the solutions 
in the main boundary layer (where y = O( 1)) by working with the inviscid functions 
W and W,. 

Inserting (2.1), (2.8), (2.9), (4.1)-(4.3), and (4.7) into (3.7) and re-expanding, we 
obtain 

(4.9) 
U' -$&Y,Y(2Y,+Y) 

for Y > Y,, where Ad denotes either $--$+ or $;-$:. Matching with (3.8) and (3.9) 
shows that 

y =  d+2s3Ki+O(d'), (4.10) 

V&/d = l+O(n),  (4.11) 

and 

(cose+&)$ = -- "' Y, A$, 

A' A=-- $" Y A$,+iKi,  
A, 2CUt ' 

(4.12) 

(4.13) 

.-where Ki is the initial wavenumber 'detuning' which can be chosen arbitrarily as an 
initial condition. 

Equations (4.10) and (4.11) are dispersion relations which determine d and j i  in 
terms of F (or in terms of the scaled Strouhal number &?J). Since their coefficients are 
all real they are consistent with our original assertion that d and Fare real quantities. 
They show that 6, @, 7 and Fpossess power-series expansions (3.1). In fact it follows 
from (2.24) and (4.10) that 

p =  41/3di+(4/1/3)d~,+O(d), (4.14) 

which shows f l  and di satisfy the usual long-wavelength small-growth-rate resonance 
condition (see also Smith & Stewart 1987) to within the order of the detuning. 
Equation (4.11) shows that F, and a. satisfy the usual long-wavelength small-growth- 
rate dispersion relation 

€, = do/vo.  (4.15) 
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Equations (4.12) and (4.13) roughly correspond to the imaginary parts of the 
dispersion relations ; they relate the (slow) growth rates of the instability waves A‘/A 
and Ah/Ao to the phase jumps Aq5 and across the critical layer. To determine 
these latter quantities, it  is necessary to consider the flow in the critical layer. 

Equations (2.10)-(2.12), (2.26)-(2.29), (4.2), (4.3), and (4.7) show that 

u =  aUAY+a44y2 

ut; + 2S(sec 8 cos 2)  Re (& + cra) ( 1 + t;sin2 0) + a3 L s i n 2  8 [ f +&P( 1 - t;) 
F 

(4.16) 
1 

+= (4- +?$*)I} [sin2 8 
A eiXl2 + & R e g )  ( Yc+,  xl) e2i2 + . . . , u;, 

v = - a2Uo Y [ B  Re i d o  eix + &Re 2iy(cosZ)A eixjz] + . . . , (4.17) 

w = -226(sin8~inZ)ReU~t;L4e~~/~+.. . ,  (4.18) 

p = P +  aCUo[eRe A0eiX + 2S(cos 8cosZ) Re A eixlz] + . . ., (4.19) 

where is the wall-layer expansion corresponding to Fie) in (2.10), we have put 

t; = C/(U0Y-c), (4.20) 

and P denotes the more-or-less constant mean pressure a t  the critical level. These 
clearly become singular at the critical level Y = Y,. The solution therefore has to be 
resealed in this region. 

5. The critical level 
The thickness of the linear, small-growth-rate critical layer is of the same order as 

the growth rate, i.e. O ( d )  in the present case. The appropriate transverse coordinate 
in this region is therefore 

i j  = (Y-yC)/a3 = (y-y,)/d. (5.1) 
Viscous effects will enter the critical-layer momentum equation while making only 

relatively insignificant modifications in the external flow (see (5.34) below) when the 
Benney-Bergeron (1969) parameter 

h = 1/(R/3) (5-2) 
is order one. The solutions in this region should depend on z and t only through the 
scaled variables (2.15) and (2.16). The governing equations should therefore be 
expressed in terms of the scaled variables zl, X ,  2, and i j  to obtain 

Du = -@px + u3pz1, a-l0pg, pp2>, 

and aux+v~+~w2+a3u,, = 0, (5.4) 

(5.3) 

where we have put 

a a  a a a 2  
D = z(u-aq-+~-+pw-+a3u--dA-, ax aq az ax, a? (5.5) 
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and u = {u, v, w}. (5.7) 

€ = u13. (5.8) 

533 

The nonlinear terms in the critical-layer solution will balance the velocity jump 
when 

As indicated in the introduction the self-interaction between the oblique modes 
produces a non-zero velocity jump across the critical layer when their characteristic 
amplitude 6is O(a'O). This will just balance the corresponding linear growth rate term 
if we take 

Introducing (5.1), (5.8), and (5.9) into (4.16) to (4.19) and re-expanding the result for 
small 7 shows that the critical-layer solution should be of the form 

u - UF = d'vo 7+ U7U(1) + Pu(2) + U'3U(3) + U16U(4) + . . . , (5.10) 
B = - r727V0 Y,(cosZ) Re i4 eix12 + ~ l O v ( ~ )  + d3d3) + Pd4)  + . . . , (5.11) 

w = g7w(1) + glOw(2) + g13w(3) + g l8 w (4)+ ..., (5.12) 

and p = P +  a l 1 2 ~ ~ ( c o s  8 cos 2) ReA eiXl2 + + + ~ ~ ~ p ( ~ )  + . . . , (5.13) 

where the d l ) ,  v ( l ) ,  

€ = 0-36. (5.9) 

and p(l)  are functions only of x,, X, 2, and 7. 
Substituting the expansions (5.10)-(5.13) into (5.3)-(5.7) we find that 

9d1) = (2G F/y) ~ ( C O S  2) Re i4 eiXl2, 

9 w C 1 )  = (& ~ / y )  @(sin 2) Re A eiXl2, 

9 u f )  = G(l) for 1 = 2, 3 and 4, 
9 w c 0  = H(z)  for 1 = 2 and 3, 

(5.14) 
(5.15) 
(5.16) 
(5.17) 

iiuy +pwy = 0, (5.18) 
1 = 2 and 3, (5.19) 

and pf) = O  for 1 = 2and3,  (5.20) 

where G(l) and H(l)  are functions of lower-order solutions and defined in Appendix A, 
and we have put 

9 = Fa/ax, +avo Ta/ax - A a2/aq. (5.21) 

We must now solve (5.14)-(5.20) subject to the transverse boundary condition that 
they match onto the outer solution (4.16)-(4.19), but before this is done it is 
convenient to introduce the following normalized variables : 

Eug) + u:,-l) + t$) + &$) = 0 for 

(5.22) 
(5.23) 

and x = 2h/(iiv02), (5.24) 

where xo is a coordinate origin shift, to be chosen subsequently (see (5.59) below). 
It is clear from (5.14) and (5.15) that the relevant lowest-order solutions are given 

u(') = a Y, 7 + 2( tan 6 COB 2) Re iQ(l)( q , 2) eiXl2, (5.25) 
w(l) = Z(sin2) Re&(l)(q,Z) eix12, (5.26) 

where &(l) satisfies L, &(l) = (sin 8) A ,  (5.27) 

by 

subject to the transverse boundary condition 

&(')- 1/11 as q++oo, 

L, = a/i%+iinq--Xa2/aq2 for n = 0, i , 2 ,  ..., , 
we have put 

(5.28) 

(5.29) 
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and jQ = F-g(gu0 K ) 2 .  (5.30) 

Equations (5.16) and (5.17) clearly possess solutions of the form 
1 1  

uy) = (#+Re x x Qg~m(y,P)exp[i($X+mZ)] for 1 = 2, 3 and4, (5.31) 

w(l) = Re C C Wlf!,(y,P)exp[i(~nX+mZ)] for 1 = 2 , 3  and4, (5.32) 

n-0 m--1 

1 1  

n-0 m--1 

where Q# = (/5-@2)2q+ ..., (5.33) 

QU = -$?q2Y, q2-gXC?&(P+~o) + . . . , (5.34) 

the passive linear term in 5 is included in (5.34) to match a slight viscous correction 
that enters the external solution (4.16) due to the slow viscous spreading of the mean 
flow, and the dots in (5.33) and (5.34) represent the terms which are independent of 
5 and are omitted because they do not play any active role in our matching 
procedure. We have included QG in (5.31) to ensure that 

Q g ! m , Q $ ~ ) o + O  as q-++co for 1 = 2 a n d 3 ,  (5.35) 

and Wlf! must satisfy the transverse boundary condition 

W(2’ n , m ,  W(3’ 3 ,1+0  and Wiy\,,+O as y++oo. (5.36) 

Substituting (5.31) and (5.32) along with (5.25) and (5.26) into (5.16) and (5.17) 
shows that 

L n Q(l) n,m = 91g!m for 1 = 2, 3 and4, (5.37) 

L, Wc,llm = # : I r n  for 1 = 2 and 3, (5.38) 

and differentiating (5.38) with respect to 7, combining with (5.37) for 1 = 3 and 
n = rn = 1 we obtain after considerable manipulation 

L (3) - 9 ( 3 )  
191,l - 1.1, 

where we have put 
(5.39) 

qi:\ = Qt\ +tan e[ WF\ + i q (  W$:\ + q Qkl)),],, (5.40) 

It now follows from (4.12), (4.13), (&lo), (5.31), and (5.40) that these solutions 
and Y(nl! m ,  Zg! m, and 92t)l are defined in Appendix B. 

must satisfy 

(5.41) 

(5.42) 

in order to match onto the discontinuous O(Sr3)  = O(a13) and O ( d )  = O(als) terms 
in (4.16) for the oblique and two-dimensional modes respectively. These equations 
ultimately determine the unknown instability wave amplitudes A and A,. They arise 
from the requirement that the change in the fundamental and subharmonic 
components of the velocity fluctuation across the critical layer as calculated from the 
external solutions are the same as when they are calculated from the internal 
solutions. 

The latter solutions can be found by solving (5.27), substituting the solution in 
(5.37) to (5.39) and then solving the result. For simplicity we consider only the 
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inviscid case. The relevant derivations are summarized in Appendix C. Substituting 
these solutions into (5.41) and (5.42) now shows that the amplitudesA and A, satisfy 
integro-differential equations. Upon noting that (see (2.29), (4.10), (4.14), and (4.15)) 

n = g ,  cose=g, E=z/u,=u,Y, (5.43) 

to the order of approximation of the analysis, and putting 

if = x-x,, 

A" = @/id$) A e'Xo12, 

A", = (M/K;)A,eiXO, 

KO = ( Z Y , / V l 2 ) P c ,  

Z= KO?,  

where X, is the coordinate origin shift, and 

M = 6~/(?&%), 

(5.44) 
(5.45) 

(5.47) 
(5.46) 

(5.48) 
(5.49) 

we find that the amplitude equations can be written as 

!!? dz = @'+:il, (~-x,)~A",(x,)A"*(2x~-~)dx~ 

+ i [ f1 K,(Z I xl, 2,) A"@,) A"@,) A"*@, + 5, - Z) dx, dz,, (5.50) 
-m -m 

+K,(Zl xl, x,)A"(z,)A"O(x,)A"*(zl + 22, - 2 ~ ) ]  dx, dz, 

+ i Jz' 
where the asterisks denote the complex conjugates, 

K3(zl x,, z,, z3) A"(zl) A"@,) A"(%,) A"*@, + x, + z3 - 2 ~ )  dz, dx, dx,, 
-ca -ca -03 

(5.51) 

K1 = &(Z-x1) [ ~ ( Z - X , ) ~ -  (Z-x1) (2-2,) + ~ ( Z - X , ) ~ ] ,  (5.52) 
K ,  = (Z-s,) (3-2,) (2Z-x1-x,), 

K3 = #%El) [(z+x,+z,-3x3) (3-z,) (Z-2x1+Z2) 
(5.53) 

- (Z+ x , - ~ x , )  {(Z+ 5, - 2 ~ ~ ) ~  - ~(Z-X,)~}] ,  (5.54) 
and ?i = (2/aU0) ( K i / K O ) .  (5.55) 

Equations (5.50) and (5.51) are the final results which determine the amplitudes of 
the instability waves. They must be solved subject to the upstream boundary 
conditions in order to match onto the linear solution far upstream in the flow: 

2 -+ a(,) e4*16 as z.+ - 00, (5.56) 
2, + e(l+iEi) z as z+. - a, (5.57) 

where (5.58) 

and A(') and A:') are the (complex) scaled initial instability wave amplitudes. The 
origin shifts xo and X, in (5.22) and (5.44) are chosen to satisfy 

(5.59) (M/4)Aho) exp [K,( 1 + iR,) x,] exp [X,] = 1. 
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The interpretation of the various terms in (5.50) and (5.51) will be deferred to $7, 
where the numerical solutions are also discussed. 

6. Asymptotic solution of the amplitude equation 
We first note that the solutions always develop a singularity at some finite value 

of z, say f. In this section we determine the asymptotic form of the solution as 
z+zS. To this end we substitute 

A" = b/(zS-z)3+i~, (6.1) 

and A, = bo/(Zs-E)4+2i$, (6.2) 
where Es and $ are real constants and b and b, are complex constants, into the 
integrals of (5.50) and (5.51) and change the integration variables from z, for 
n = 1, 2, and 3 to (zs-zn)/(Zs-z) to show that 

lw 1 1 r w K 3 ( %  I zl, x2, 2,) A"(x,) 2(x , )  A"@,) A"*(zl + z, -I- x, - 2%) dz, dz, dz, 

D4($), (6.6) (Zs - 3)5+2iP 

- b21bI2 - 

where the D, are defined in Appendix D. 
as Z+ zS, and the left-hand sides 

of (5.50) and (5.51) are balanced by the integral terms on the right-hand sides. 
Substituting (6.1) and (6.2) into the left-hand sides shows that the terms will balance 

A"z and A,, become large compared with A" and 

when 

which can be solved to determine $, lbl, \boll and the argument of b2/b,. Notice that 
the individual arguments of b and b, are, a t  this stage, indeterminate. 

7. Discussion and results 
The amplitude equations (5.50) and (5.51), together with the upstream boundary 

conditions (5.56) and (5.57), are the main results of this paper. They only apply to 
the inviscid case. However, they can, in principle, be modified to include viscosity, 
but the resulting formulae would then be exceedingly complex. It would therefore be 
better to account for viscous effects by numerically solving (5.27) and (5.37)-(5.39) 
subject to the jump conditions (5.41) and (5.42). This will be done in a subsequent 
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paper. Here, we merely note that the resulting solutions will not be uniformly valid 
as the frequency w* goes to zero because the v$cous Stokes layer at the wall 
eventually contributes term U~t?3/[2Rd(w*d/U,,,)5]~ to the scaled linear growth rate 
(5.48) when o* becomes sufficiently small. However, the viscous solution can 
be made uniformly valid for all frequencies by replacing K~ with K ~ + U : F ~ /  

The system (5.50), (5.51), (5.56), and (5.57) contains three independently 
controllable parameters : ii, which accounts for the effect of initial wavenumber 
detuning and extends the analysis to the off-resonance case ; arg (a(O)), which 
accounts for the initial phase difference between the oblique modes and the plane 
wave; and la(’)[, which accounts for the initial amplitude ratio of the oblique modes 
relative to the plane wave. The effect of each of these parameters is discussed below, 
but first we note that (5.50) and (5.51) are integro-differential equations (of the type 
considered by Hickernell 1984; Goldstein & Leib 1989; and Leib 1991 in a slightly 
different context ; and Goldstein & Choi 1989 in a more closely related context) rather 
than the usual ordinary differential equations of the type first considered by Stuart 
(1960), Watson (1960), and Landau & Lifshitz (1987, $26) in the plane wave context, 
and by Craik (1971), Smith & Stewart (1987), and others in the resonant-triad 
context. The reason for this difference is that the nonlinear interactions now occur 
entirely within the non-equilibrium-type critical layer rather than in the external 
flow. This causes a gradual phase shifting between the different modes that can 
interact within that critical layer to produce a kind of upstream history effect, which 
results in the integral terms appearing on the right-hand sides of (5.50) and (5.51). 

It is worth noting that the present paper is the first to consider coupled amplitude 
equations of this type and that the behaviour of the coupling terms is therefore of 
special interest. We now go through these equations term by term. The first terms 
on the right-hand sides are just the linear growth rate terms and are all that remain 
when the amplitudes become sufficiently small. (Note the initial wavenumber 
detuning factor that appears in the linear term of (5.51).) The second term on the 
right-hand side of (5.50) is a ‘mutual interaction’ term that accounts for the effect 
of the plane wave on the oblique mode. The non-integral analogue of this term is also 
present in the resonant-triad analyses of Craik (1971) and Smith & Stewart (1987), 

[2R, (0 *A/  Uo0)5]t 

and the scaling (5.9) suggests that it will be the dominant nonlinear term in both 
(5.50) and (5.51) whenever 

O(6) < O ( S / $ ) ’  (7.1) 
i.e. whenever the oblique-mode amplitude is small compared with the two- 
dimensional wave amplitude divided by the cube of the (small) streamwise 
wavenumber scale. Equations (2.11), (2.20), and (5.8) show that this stage first 
occurs when the cross-flow velocity fluctuation of the plane wave is of order d4 in the 
main part of the boundary layer -with the linear instability wave growth rate being 
of O ( d )  = 0 (adverse pressure gradient)2. The nonlinear interaction therefore occurs 
when the two-dimensional instability amplitude gets to be of the order of the adverse 
pressure gradient to the seventh power (or, equivalently, the linear instability wave 
growth rate to the power p). This is in contrast to the Raetz (1959)-Craik (1971) 
formulation in which the interaction occurs when the amplitude is of the order of the 
linear growth rate. 

This stage might be termed the ‘parametric resonance’ or ‘secondary instability’ 
stage, since the plane wave continues to exhibit linear growth, and the oblique mode 
is then determined by a linear equation with known coefficients. The solution to this 
equation is given in Appendix E. It shows that the oblique-mode instability wave 
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amplitude x can itself be represented by a superposition of modes, each of which 
exhibits exponential growth. This solution also shows that A” tends to be dominated 
by the lower-order modes at small values of 2, but that the higher modes rapidly 
come into play and the ‘infinite tail’ of the series eventually determines the 
behaviour of the solution at large values of 2. In  which case, (E 26) shows that A” 
behaves like 

A” cc e 4 ~ / 5  e-3315 exp [ S_, (x0/ 1o)f as Z+ a, (7.2) 

where xo is given by (E 2). 
The first factor is the linear growth term, so that the next two factors represent a 

net augmentation of the growth above the linear growth. The last factor shows that 
exponential-of-an-exponential growth does occur in this limit. The Smith & Stewart 
(1987) solution will also exhibit faster than exponential growth when the back- 
reaction terms are neglected in their amplitude equation (i.e. their (3.lb) and (3.1c)), 
but the detailed behaviour is quite different from theirs (e.g. our growth rate is 
proportional to z$ while theirs is proportional to Lo). 

When A” is sufficiently small, the plane wave can become fully nonlinear before it 
is affected by the obligue modes. This will occur when a, becomes O(cr-6) before back 
reaction can occur. A will then evolve on the lengthscale ~/d, the oblique-wave 
critical-layer thickness will then be much larger than that of the plane wave, and the 
oblique mode amplitude will still be determined by (an appropriately scaled version 
of) (E 1)  but with A”, factored out of the integral and the first (i.e. linear growth) term 
omitted from the right-hand side. The relevant solution is still given by (7.2) to 
within slowly varying amplitude function, but with xo now given by the nonlinear 
critical-layer solution of Goldstein et al. (1987) rather than by (E 2). Details will be 
given in a forthcoming paper. 

However, the limit (7.2) is often never reached because (5.50) and (5.51) become 
fully interactive before it can occur. We term this latter stage the ‘fully coupled’ or 
‘fully interactive’ stage. Equations (5.8) and (5.9) show that it occurs when the 
oblique-mode amplitudes become of the order of the instability wave growth rate to 
the power %. More importantly, however, the back-reaction term, i.e. the final term 
on the right-hand side of (5.51) is now quartic in the instability-wave amplitudes, 
rather than quadratic as in the analyses of Craik (1971), Smith & Stewart (1987), etc. 
There is also a mutual interaction term which appears on the right-hand side of (5.51) 
but does not occur in any previous resonant-triad analysis. 

However, the most significant new effect is that the oblique modes can now 
interact with themselves to produce the cubic ‘ self-interaction ’ term on the right- 
hand side of (5.50) once their amplitude becomes O(a’O). The numerical results 
(discussed below) show that this term which also occurs in the analysis of Goldstein 
& Choi (1989), causes a rapid increase in the instability growth that ultimately ends 
in a singularity at  a finite downstream position - indicating an explosive growth of 
the instability waves there. This explosive growth is then transferred to the plane 
wave through the back-reaction term and, to a greater degree, through the mutual 
interaction term in the plane-wave amplitude equation. 

In  summary then, the following picture begins to emerge from the analysis. Linear 
growth of the two-dimensional mode allows its amplitude to reach a level that 
produces a parametric resonance in the oblique modes which then allows them to 
grow a t  an accelerated rate until they become large enough to interact with 
themselves. This self-interaction (which was first analysed by Goldstein & Choi 1989) 
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FIQURE 2. (a) 1n@/d0)( vs. 2, and (b )  lnlxoI v8. E :  arg(a(O)) = 0, Ez, = 0, and la(0)l = 0.1, 0.01, 0.001, 
0.0001, curves (i)-(iv) respectively (-, numerical; . . * * * 1 ,  local asymptotic; ----, parametric 
resonance). 

produces a further enhancement in their growth, which ultimately ends in a 
singularity at  a finite downstream position. This explosive growth is then transferred 
to the plane wave through the mutual interaction and back-reaction terms. 

These conclusions are borne out by the numerical results shown in the following 
figures which are plots of the scaled instability wave amplitudes, A" and A", the 
instability wave gowth  rates, @&/I4 and ~ ~ o ~ J ~ ~ o ~ ,  and the scaled wavelength 
reductions, Im (A,/A) and Im (Aoz/Ao),  as functions of the scaled streamwise 
coordinate Z. 

The results were obtained by using the Adams-Moulton method (see Gear 1971, 
pp. 11 1-1 13) with variable (up to  twelfth) order to advance the solutions downstream 
from the prescribed upstream linear states (5.56) and (5.57). The integral terms on 
the right-hand sides of (5.50) and (5.51) were computed by using the eleventh-order 
(9 point) Newton and Cotes' integration formula (see Kopal 1961, pp. 575-577) with 
the upstream 'tails ' evaluated analytically from the upstream linear solutions. 

Figure 2(a, b) illustrates the effect of varying the normalized initial amplitude 
ratio la(O)l, The initial wavenumber detuning and the argument of a(") are set equal 
to zero. The results show that the scaled amplitudes initially exhibit linear growth 
and that the oblique-mode amplitudes begin to exhibit faster than exponential 
growth when the scaled streamwise coordinate E is equal to zP z 0, independently of 
la(O)I. This portion of the curve (as well as the linear portion) should be well described 
by the parametric resonance solution which is worked out in Appendix E and plotted 
as the dashed curve in figure 2 (a). The plane wave, on the other hand, continues to 
exhibit linear growth until z = zn, which is much larger than zP, with the exact value 
now depending on the choice of la(")(. 

The la(")I independence of zP merely reflects the fact that the mutual interaction 
term makes a significant contribution to (5.50) when the plane-mode amplitude 
becomes large enough to satisfy (5 .8)  independently of the oblique-mode amplitudes 
(as long as their relative magnitudes are small enough to satisfy (7.1)).  However, the 
la(")I dependence of zn occurs because the fully interactive stage begins when the 
oblique-mode amplitude becomes large enough to satisfy (5.9) and the parametric 
resonance stage therefore becomes larger when la(O)l becomes smaller, as shown in 
figure 2 (a). 

The scaled amplitudes of both the oblique mode and plane wave then exhibit a 
rapid increase in growth and ultimately end in a singularity at a point E ~ ,  whose exact 
location also depends on the choice of (a(O)I but is the same for both the oblique mode 
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FIGURE 3. (a) Im(K’/A) ws. Z, and ( b )  I m ( ~ o / ~ o )  us. Z: srg(do)) = 0, ti = 0, and ldO)l = 0.1, 0.01, 
0.001, O.OOO1, curves (i)-(iv) respectively (-, numerical; ----, parametric resonance; -.-.-, 
asymptotic parametric resonance). 

and the plane wave. The flow is fully coupled in this region, in the sense that all of 
the nonlinear coupling terms now make a significant contribution to (5.50) and 
(5.51). The nonlinear increase in plane-wave amplitude is almost entirely due to the 
mutual interaction term in (5.51), which does not appear in the Craik (1971) and 
Smith & Stewart (1987) analyses and which is always much larger than the back- 
reaction term for the entire range of parameters considered herein. The plane-wave 
amplitudes increase monotonically in this nonlinear stage, but the oblique-mode 
amplitudes exhibit some oscillations. These oscillations, which also appeared in the 
weakly nonlinear results of Goldstein & Leib (1989) and Goldstein & Choi (1989) and 
the strongly nonlinear results of Goldstein & Hultgren (1988), are due to the 
nonlinear exchange of energy between modes that usually occurs within the critical 
layer. The dotted curves are obtained from the local asymptotic representations (6.1) 
and (6.2), which describe the solution in the vicinity of the singularity. The 
singularity location zs is determined from the numerical solution. Notice that these 
curves, which do not exhibit any oscillation, still provide a fairly good representation 
for the oblique mode amplitudes over the entire range zn < Z < zS, but only provide 
a good representation for the plane-wave amplitudes when z is somewhat closer to 
f. This is consistent with our observation that the singular nonlinear behaviour is 
initiated by the self-interaction term in the oblique-mode amplitude equation. It is 
also worth noting that the transition to fully coupled behaviour is very abrupt for 
the range of la(O)l considered. The net effect of reducing Id0)] is to delay both the onset 
of the fully coupled behaviour and the ultimate downstream location of the 
singularity. 

The asymptotic solutions suggest that the present analysis will break down when 
z-zS is of the order of the wavelength scale X and that the flow in the inviscid wall 
layer (see $4) will then be fully nonlinear. It is easy to show that the next stage of 
evolution will then be governed by the inviscid, three-dimensional, unsteady triple- 
deck equations. The viscous flow near the wall will be governed by the three- 
dimensional unsteady boundary-layer equations and will probably separate. 

Figure 3 (a, b )  shows the scaled wavelength reduction versus the scaled streamwise 
coordinate for the same conditions used in figure 2. The parametric resonance 
solutions obtained from (E 6) and (E 7) are plotted as the dashed lines, and their 
asymptotic value, which is obtained from (7.2) is plotted as the dot-dashed curve. 
Notice that the numerical solutions always become fully interactive before the 
parametric resonance solutions reach their asymptotic stage. 
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FIGURE 5. (a)  E ws. Z, and (a) Eo vs. Z: ldO)l = 0.01, k, = 0, and arg (do)) = 45", 90°, 130", 135O, Oo, 
curves (i)-(v) respectively (-, numerical; ----, parametric resonance; -.-.-, asymptotic 
parametric resonance). 

Figure 4(a, b) shows the effect of varying arg (do)),  the argument of do). Here we fix 
la(o)( = 0.01, typical of the values that might occur in the relevant experiments. The 
initial wavenumber detuning is still equal to zero. Notice that the arg (do)) = 0 
results, which are shown in figure 2, are almost identical to the arg(a(O)) = in rad 
case. The net effect of varying arg (do)) between in and in rad is to delay the growth 
of the oblique-mode amplitude at the parametric resonance stage and, therefore, to 
move both the onset of the full interaction and the position of the singularity further 
downstream. These locations increase monotonically as 2 arg (do)) increases (or 
decreases) from in to in (or -in) rad. 

In order to explain the reduced growth and associated oscillations of the oblique- 
mode amplitudes that occur at the parametric resonance stage, it  is useful to examine 
the nonlinear transfer rates of the instability wave energy, E and go, which are twice 
the nonlinear growth rates, 

E = (d@lz/&)/l.l"lz-g = 2 [Re(a'/A")-#], 

Eo = (d1.1"012/d~)/~012-2 = 2 [Re (a'o/xo) - 11. 

(7.3) 

(7.4) 

The oblique-mode amplitude equation (5.50) shows that E is determined by the 
mutual-interaction term during the parametric resonance stage since the self- 
interaction term is then much smaller than this term. Figure 5 (a, b) shows E and 8, 
as functions of Zfor the conditions of figure 4. The figures also show (i) the analytical 
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FIGURE 6. Im (z/d) 'us. T. ldO)l = 0.01, 2, = 0, and arg (do)) = 45", 90°, 130°, 135O, Oo, curves (i)-(v) 
respectively (-, numerical ; ---, parametric resonance ; - .- .-, asymptotic parametric 
resonance). 

parametric resonance solutions, which are obtained by substituting (E 6) and (E 7) 
into (7.3) and are plotted as the dashed curves and (ii) the asymptotic parametric 
resonance solution, which is obtained by substituting (7.2) into (7.3) and is plotted 
as the dot-dashed curve. The oblique modes gain energy throughout the entire 
parametric resonance region when arg (do)) = in, in, and 0 rad. However, the 
nonlinear mutual interaction causes the oblique modes to lose energy initially, but to 
gain it back later when arg (a")) = En: rad. It is worth noting that parametric 
resonance solutions always approach the asymptotic solution (7.2) when arg (do)) =I= 
fn, while the full numerical solutions never reach this limit because (5.50) and (5.51) 
become fully interactive before this can occur. 

A very dramatic change in behaviour occurs when arg (do)) E f n :  rad, with the 
mutual interaction now causing the oblique modes to lose energy continuously and 
eventually causing a very rapid drop-off in their amplitudes a t  an z of about 3.19. 
Notice that this behaviour is well described by the analytical parametric resonance 
solution. However, the effect would probably be very hard to observe experimentally, 
since it occurs over a very small range of angles about in. Nevertheless, it does 
provide an opportunity for artificially controlling instability-wave growth by 
manipulation of phase mismatch between modes. 

Figure 6 shows the scaled wavelength reduction as function of the scaled 
streamwise coordinate for the same conditions used in figure 4(a). Computations 
based on both the analytical parametric resonance solution and the asymptotic 
parametric resonance solution are also shown in this figure. Notice that Im (T/A") for 
the arg (do)) = 0 case is almost identical to the negative of the arg (ac0)) = in result 
at  the parametric resonance stage. The results again show that the fully coupled 
stage comes in well before the asymptotic exponential-of-an-exponential stage is 
reached. 

Figures 7 and 8 illustrate the effect of initial wavenumber detuning away from the 
resonant condition p/Z = 1/8/2. The initial amplitude ratio ld0)1 is again set equal to 
0.01, and the arg (do)) is set to zero. The results are similar to those discussed above 
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P 
(ii) 

20- (a) 

I5 - 

10 - 

c - 

- 2  0 2 4 6 8 10 - 2 0  2 4 6 8 10 
f f 

(i)-(v) respectively (-, numerical; . . . . . . , local asymptotic; ---, parametric resonance). 
FIQURE 7. (a )  In MI us. Z, and (b)  In&,] us. 2: = 0.01, arg (do)) = 0, and rZ; = 0, 1, 2, 4, 8, curves 

in that increasing the initial wavenumber detuning now delays the growth in the 
oblique-mode amplitude and moves both the onset of the fully coupled stage and the 
singularity position further downstream. In fact, the oblique-mode amplitudes grow 
almost linearly, but with some oscillations, at the parametric resonance stage which 
appears when the detuning parameter ti becomes greater than about 4. The 
oscillations at  this stage are again due to the nonlinear exchange of energy between 
the oblique modes and plane wave, as can be seen from figure 8(a) ,  which is a plot 
of fi as defined in (7.3). Notice that the onset of full interaction becomes very abrupt 
at larger values of the detuning parameter. Figures 7 ( a )  and 8(a )  show that the 
parametric resonance solution becomes increasingly oscillatory as the initial 
wavenumber detuning is increased. The rapid drop-off in the oblique-mode 
amplitude, which occurred when arg (do)) = @, is now observed when the detuning 
parameter ii is equal to 1. However, in the present case, the wavenumber detuning 
eventually causes the oblique-mode amplitude ultimately to increase in magnitude. 

The authors would like to thank Professor F. T. Smith for first suggesting and then 
strongly encouraging them to extend the analysis to the fully coupled case, Professor 
J. S. B. Gajjar for his helpful comments about extending the solution to low 
frequencies, and Drs Lennart S. Hultgren and David W. Wundrow for helping them 
with the extension to the case of a strongly nonlinear plane wave. 
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Appendix A 

are 
The detailed expressions for the terms on the right-hand sides of (5.16) and (5.17) 

- - 

Appendix B 
The expressions for the terms on the right-hand sides of (5.37)-(5.39) are 
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(B 15) 

(B 16) 

(B 17) 

(B 18) 

(B 19) 

(B 20) 

(B 21) 

(B 22) 

(B 23) 

(B 24) 

and the asterisks denote the complex conjugates. We have used the fact that 

and anticipated the fact that the relevant solutions to (5.37) and (5.38) along with 
(B 2), (B 5), (B 8), and (B 9) are the trivial solutions 

(B 25) 

(B 26) 

(B 27) 

The dots in (B 12) and (B 15) represent the terms which do not play any active role 
in calculating the velocity jump of the two-dimensional wave across the critical 
layer. 

Appendix C 

the inviscid case. 
In this appendix we determine Q(l), &tlm, Willm, qQ\, jTm qf’, dr], and jrm &fL dr] for 

It follows from (5.27) to (5.29) that 

(C 1 )  
where we have put 

It is worth noticing that 

when 
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so that (5.25) and (5.26) approach the linear critical-layer solution when A 
approaches the linear upstream condition. 

Inserting (C 1)  along with (B 22) into (B l) ,  (B 4),  (B 6), (B 7),  and (B 10) and 
integrating (5.37) and (5.38), we obtain 

QI;f;)O = - (Y,/c") tan2 OJoz(r, 2 ) ,  

W;:; = (i&/P) tan~Re[Jo l (~ ,2 )+4AJlo (~ ,2 ) ] ,  

(C 3) 

(C 4) 

Jmn(r,2) = ei~z1(2-21)mA(21)I~(~,21)d21 for m,n = 0,1 ,2 ,  ..., (C9)  
J -03 

Kmn(q,2) = ~wei~z1(2-21)mA(21)In(~ ,21)d21 for m,n = 0,1,2,  ..., (C 10) 

and the asterisk denotes the complex conjugate. Inserting (C 1)  and (C 4)  into (B 3) 
and integrating (5.37) yields 

Q::; = -(Y,/Z) tan2~8e[J0,(r],9)+25,,(~,~)~4~J,,(~,2)]. 

0 . 2  - To, ZdT?  219 

(C 11) 

(C 12) 

Substituting (C 4) and (C 6) along with (B 16) into (B 17) and (B 19) we find that 

V(2) - (2) 

and V(2) ,, - - - * -  i a q  Y,Ao(2)-~~e-2i'lz{[e2irz U!),,(q, z ) ] ~  

-(iYJP) tan2B[eiTzA(2)Il(~,2)+2&(q,2)]}, (C 13) 

where 0,27  (czY,/c) tan2 8Re [Jll(r, 2) +2AJzO(9, 2)] .  (C 14) = 

Inserting (C l) ,  (C 3), (C 4), (C 6), and (C 11)-(C 13) into (B 11) and integrating 
(5.39), we obtain 



where 

Integrating (C 15) and substituting the result into (5.41), we can obtain the 
amplitude equation for A .  

Inserting (C 1)-(C 4), (C 6), (C 7),  and (C 11)-(C 13) into (B 12) and integrating 
(5.38) yields 

+Kll(~,fl)ldfl}]+ ..., 
where 

and the dots in (C 19) represent the terms which do not play any active role in 
calculating the plane-wave velocity jump across the critical layer. Substituting 
(5.40), (B 26), (C 5), and (C 15) into (B 20) we find 

v(3) 1.1 - - -@Te-W [eW 4 3 )  1,,(q, q15- (&/@I 4 s e c  6 )  e-ive 2.&(q, 2) rl;f"z(r, f) 

and we have omitted the terms which do not play any active role in calculating the 
fundamental mode velocity jump. 
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Inserting (B 27), (C l), (C 6), (C 7), and (C 13) into (B 13) and (B 14) and 
integrating (5.37), (5.38), and (B 21), we obtain 

Qf\ = -&tanOWi?\,,+- Y, (sec8)e-3i'@ e2i'@~A,(Z,)12(q,531) dZ1 
3 1  

- i N  2 1 1  ( , 53) e2'Vf UFk(q,Z)  + (2Y,/1) A tan2 8 53) [4K,,(q, 53) 

+ ( ~ - A ) K o s ( ~ ~  2 )  + d ? ( q ,  53)]-I2(7> Z)Koi(q, 2)  

V$:\ = [U~~',(q,53)+ftan8W~~\(q,53)]}f+ (~Y,/3c3 A(sec8) 

e-317/f e2iqz 1 
[ [210(q,B) Uk:;(q, P)-=I,(q, 2)  Vk:),-,(q, Z)] + (i& y2,/22) sec2 8 ac 

x {e'"A(f) W O 2 ( q ,  2 )  +K,,(q, 2)  + 3 N ~ ( q , 4 1 + 4 N 0 ( q ,  2)Ko,(q, 5%1, (C 26) 

where .f6(7, 2, = 2[Kll(q, 53)-N?(q? ')I' (C 27) 

Inserting (B 18), (B 26), (B 27), (C l), (C 3)-(C 7), (C 11)-(C 13), (C 15), (C 19), 
(C 21) and (C 24) to (C 26) along with (B 16) into (B 15) and integrating (5.37), we can 
obtain Qt),, after some manipulation. Integrating QtL and substituting the result into 
(5.42), we obtain the amplitude equation for A,. 

Appendix D 
The detailed expressions for D ,  in (6.3)-(6.6) are 

dvdu, ( D 2 )  
(U- 1) [ 2 ( ~ -  1)'- (U-1) ( V -  1 ) + 3 ( ~ -  l)'] 

u3+i@V3+i+(u + V -  1)3-iQ 

1 
D4 = :J;J: J: u3+isV3+i+W3+'s(u+V+w-2)3-i+ 

x (U- 1) [(U- 6 ~ + 5 )  (U- 1 ) 2  + ( 9 ~ - 2 ~  - 7) ( V -  1)' 

- ( 2 ~  - v - 1) ( u + v - 3~ + 1 ) ( w - 1 )]dw dv du. (D 4) 
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Appendix E 
In  this Appendix we determine the analytical solution of the amplitude equations 

at  the parametric resonance stage. The oblique-mode amplitudes are then small 
enough so that we can neglect the self-interaction term in (5.50) and the nonlinear 
interaction terms in (5.51) to obtain 

(a- xl), A",(x,) A"*( 2x1 - a) dz,, dx- 

The result can also be obtained formally by setting 

s=  8, (E 3) 
in place of (5.9) and following the same (but, simplified) procedure as in $5 .  

It follows from (E l), (E 2), and (5.57) that 

, (E 4) A" - e(l+iq)z 
0 -  

and, therefore, that 

10a"'-(13-5iti)a" = 'e" (E-x1)2a"*(xl)dx,, 
2 L 

a" = &-i#?*) 2' ,A- where we have put 

Substituting the assumed expansion 
OD 

a" = er2 C anexp{[n-(-l)n!$i]z} 
n-0 

into this result and reordering the indices of summation shows that 
m 

C [a,{ 1 0 ( ~  + n) - 13 + [l- ( - l)fl] 5iZi} -iiCfl-l a:-,]exp {[n- ( - l)fl $ti] Z} = 0, 
n=1 

provided we take 

where 

for n = 0 , 1 , 2  ,.... 

(E 10) 
It follows that (E 7) will satisfy (E 5 )  for arbitrary a, if a, satisfies the recurrence 

relation 

and (E 6) and (E 7) satisfy the upstream boundary condition (5.56) when we take 

a 0 = a("). (E 12) 
For simplicity we restrict our attention to the perfectly tuned case where ti = 0. 

Then the recurrence solution (E 11) is easily summed to obtain 

1 
a, = - 

20nn ! 
(C, C ,  C, . . . I?,-~) a(,), (E 13) 
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where 1 ,  n = 1 , 3 , 5  ,..., 
en={ 0 ,  n = 2 , 4 , 6  ,..., 

and we have put 

It follows that 

$ = arg [ia(O)*/a(O)]. 

d = [;(a+ + a-) ++'+ (a+ - a-)] a(,) 

where 

Equation (E 17) becomes 

where (7),  = T ( 7 + n ) / r ( 7 )  denotes the generalized factorial function, and r ( ~ )  
denotes the gamma function. It is also of interest to determine the asymptotic 
behaviour of (E 16) as 3-t 00. Now it is shown in Dingle (1973, p. 86) that 

where J, denotes the zeroth-order Bessel function in the usual notation and $; 
denotes the integration over the contour starting from a point at  co on the positive 
real axis, encircling the origin once counterclockwise and returning to the starting 
position. Then since the Bessel function J,-l(Z) has the representation 

m (;iZ)zn+T-l 
J,-l(Z) = ilPr C ,-, n ! r(7 + n )  ' 

it  follows from (E 18) that the a+ have the integral representations - 

1 
( -  U( f&)fe"/2)1-74-1 2( +& 2- J,( -2U)-dU, (E 21) 

2ni ( fe;) U 

or upon introducing the new variable 

s = U/(f&e")i, 

x J,[ -24 k&ez)i] ds, (E 23) 
which for large Z becomes 

x cos[-2s(_f&eZ)f-in]ds. (E 24) 
This integral has saddle points at 

and it follows that 
s = + l , f i  (E 25) 

r3(7) ebl/4 1 Z 3(1-27)/8 rZ a ,  -- ( f m e  ) e exp[4(f&eE)f] as Z-tco, (E 26) 
2(2n)i 

which shows that A" grows like the exponential of an exponential as E+ 00. 
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